
 ISSN NO: 9726-001X

Volume 13 Issue 02 2025

133

MACHINE LEARNING-POWERED CLIENT SIDE

PROTECTION AGAINST WEB SPOOFING ATTACKS

KOREY SHASHANK
UG Student,

Department of CSE,

St. Martin’s Engineering College,

Secunderabad, Telangana, India

shashankkorey@gmail.com

E. SOUMYA

Assistant Professor,

Department of CSE,
St. Martin’s Engineering College,

Secunderabad, Telangana, India

esoumyait@smec.ac.in

Abstract- Web spoofing attacks represent a critical threat to

the security and integrity of online communication and

transactions. These attacks involve malicious actors

impersonating legitimate websites to deceive users into

revealing sensitive information or unwittingly engaging in

harmful actions. To effectively address this growing threat,

there is an urgent need for robust defense mechanisms

capable of identifying and thwarting web spoofing attempts in

real-time. Current approaches to combating web spoofing

primarily rely on server-side defenses, such as SSL/TLS

protocols and domain validation techniques. While these

methods provide some level of protection, they suffer from

significant limitations. Firstly, server-side defenses are

reactive, meaning they can only detect and respond to

spoofing attempts after they have occurred. This delay leaves

users vulnerable during the critical window between the

initiation of the attack and its detection. Moreover, server-side

defenses may struggle to accurately differentiate between

legitimate and spoofed websites, leading to false positives and

negatives. The prevalence of web spoofing attacks

underscores the need for proactive client-side defense

mechanisms. Existing approaches predominantly focus on

serverside defenses, which are insufficient in providing timely

and reliable protection against evolving spoofing techniques.

Thus, there exists a critical gap in the current security

infrastructure that necessitates addressing to effectively

combat web spoofing threats. we aim to provide users with a

proactive and robust solution capable of detecting and

preventing spoofing attempts before they inflict harm.

Additionally, by harnessing machine learning techniques, we

aim to develop a system capable of continuously learning and

adapting to emerging spoofing tactics, thereby enhancing its

effectiveness and resilience against evolving threats. The

proposed PISHCATCHER system represents a novel

approach to combat web spoofing attacks. It is a machine

learning based defense mechanism designed to operate at the

client-side, enabling real-time detection and prevention of

spoofing attempts. By analyzing various features extracted

from web pages, including HTML structure, CSS styles, and

JavaScript behavior, PISHCATCHER employs advanced

machine learning algorithms to accurately distinguish between

legitimate and spoofed websites.

I. INTRODUCTION

The Web spoofing attacks pose a significant threat to online

security by allowing malicious actors to impersonate legitimate

websites, deceiving users into divulging sensitive information

or engaging in harmful actions. To combat this threat

effectively, robust defense mechanisms are essential to identify

and thwart spoofing attempts in real-time. While current

approaches primarily rely on server-side defenses like

SSL/TLS protocols and domain validation techniques, they

suffer from limitations such as 5reactivity and difficulty in

accurately differentiating between legitimate and spoofed

websites. To address these challenges, the proposed

PISHCATCHER system offers a novel approach to combat web

spoofing attacks. Operating at the client-side, PISHCATCHER

leverages machine learning techniques to analyze various

features extracted from web pages, including HTML structure,

CSS styles, and JavaScript behavior. By employing advanced

machine learning algorithms, PISHCATCHER accurately

distinguishes between legitimate and spoofed websites,

enabling real-time detection and prevention of spoofing

attempts.

II. RELATED WORK

[1] R. Kumar (2023)

Web spoofing attacks have become increasingly common with

the rise of phishing and fraudulent websites. This study presents

a client-side defense mechanism using machine learning

techniques, specifically Random Forest and Support Vector

Machines (SVM), to classify malicious URLs. The model

achieved 96% accuracy on a dataset of real-world phishing

websites.

mailto:shashankkorey@gmail.com
mailto:esoumyait@smec.ac.in

 ISSN NO: 9726-001X

Volume 13 Issue 02 2025

134

[2] S. Patel (2023)

This paper introduces a novel approach for web spoofing

detection using Convolutional Neural Networks (CNNs). By

analyzing webpage screenshots and comparing them to

legitimate references, the model identifies visual

inconsistencies. The proposed system achieved 94%

accuracy, outperforming traditional blacklist-based methods.

[3] A. Gupta (2023)

With the growing sophistication of phishing websites, this

research explores the use of Natural Language Processing

(NLP) for URL and content-based spoofing detection. The

model employs a Bi-LSTM network to analyze text patterns,

achieving 92.5% accuracy in identifying fake websites.

[4] M. Rahman (2022)

This work presents a browser extension that uses a machine

learning-based classifier to detect web spoofing attacks. The

system extracts features such as URL patterns, HTML

structure, and JavaScript behavior, using Gradient Boosting

to achieve 95% detection accuracy.

[5] L. Zhang (2022)

This study proposes a hybrid approach combining deep

learning and heuristics for web spoofing defense. By

integrating CNNs with rule-based filtering, the system

effectively detects phishing sites and malicious content,

reducing false positives by 18%.

[6] T. Brown (2021)

This paper focuses on web spoofing prevention using

Reinforcement Learning (RL). The model dynamically

adjusts its detection parameters based on the browsing

behavior of users, improving adaptability and accuracy. It

achieved a detection rate of 91% on real-world spoofing

datasets.

[7] H. Lee (2021)

To combat phishing and spoofing attacks, this research

employs an ensemble learning model combining Decision

Trees and K-Nearest Neighbors (KNN). The hybrid model

outperforms single classifiers, achieving 97% accuracy on

malicious website datasets.

[8] F. Khan (2020)

This paper explores the use of Generative Adversarial

Networks (GANs) to generate synthetic spoofing samples,

improving the robustness of machine learning classifiers. The

model enhances the accuracy of existing spoofing detection

systems by 12%.

[9] J. Silva (2020)

A client-side browser plugin for detecting web spoofing

attacks is proposed in this study. It uses Logistic Regression

to analyze URL patterns and webpage metadata, achieving

93% accuracy with minimal impact on browsing performance.

[10] E. Carter (2019)

This work investigates the use of deep learning for identifying

visual spoofing attacks. The model uses a ResNet50-based

CNN to analyze webpage snapshots, detecting minor

inconsistencies and achieving 90% accuracy on a benchmark

phishing dataset

III. PROPOSED WORK
3.1 Overview

The project showcases a comprehensive approach to

developing a robust system for detecting phishing URLs,

leveraging advanced machine learning techniques and thorough

data analysis. Here is the overview of the project:

1. Initialization and Dataset Handling:

The project initiated by importing necessary Python packages

and libraries, including those for data handling (pandas,

numpy), machine learning (sklearn, xgboost), visualization

(matplotlib, seaborn), and URL parsing (urllib). This ensures

all essential tools are available for subsequent tasks. The

dataset, located in "Dataset/phish_tank_storm.csv", is loaded

using pandas, which provides a robust framework for data

manipulation. Missing values within the dataset are replaced

with zeros to prevent any computational errors during feature

extraction and model training. The dataset comprises URLs

labeled as either legitimate (0) or phishing (1), serving as the

foundation for model training and evaluation.

2. Exploratory Data Analysis (EDA):

Exploratory Data Analysis is conducted to gain an initial

understanding of the dataset's composition. The labels are

grouped and counted to determine the number of legitimate and

phishing URLs. This distribution is visualized using a bar plot,

offering a clear picture of class balance within the dataset. Such

visualization is crucial as it highlights any potential class

imbalance, which can significantly impact model performance

and necessitate techniques such as oversampling,

undersampling, or class weighting during model training.

3. Feature Engineering:

Feature engineering is a critical step where meaningful features

are extracted from the raw URL data to improve model

performance. A custom function, get_features(), is defined to

extract various features from URLs. This function computes the

length of different URL components (e.g., domain, path) and

counts occurrences of specific characters (e.g., dots, hyphens,

slashes) within these components. These features help capture

patterns that can differentiate legitimate URLs from phishing

ones. The extracted features are saved in a processed dataset file

("processed.csv") for consistency and to avoid redundant

computations in future runs.

 ISSN NO: 9726-001X

Volume 13 Issue 02 2025

135

4. Data Preprocessing:

In this step, the dataset undergoes further preprocessing to

ensure it is suitable for machine learning tasks. Non-numeric

data such as URL components are transformed into numeric

features using the previously defined get_features() function.

The dataset is then reloaded, and any missing values are

filled. Target labels are converted into numeric format to

facilitate model training. The preprocessed dataset is split

into feature variables (X) and target labels (Y), normalized

using MinMaxScaler to scale the features within a specific

range, and then shuffled to ensure randomness during model

training.

5. Machine Learning Model Training:

Three distinct machine learning models are trained on the

preprocessed dataset: Support Vector Machine (SVM),

Random Forest, and XGBoost (Extreme Gradient Boosting).

Each model is trained on the features and corresponding

labels to distinguish between legitimate and phishing URLs.

6. Model Evaluation: The trained models are evaluated on a

test set to measure their performance. Metrics such as

accuracy, precision, recall, and F1-score are computed to

provide a comprehensive assessment of each model's

effectiveness. Confusion matrices are plotted to visualize the

distribution of true positives, true negatives, false positives,

and false negatives, offering insights into each model's

strengths and weaknesses. These evaluations help identify the

most effective model for phishing URL detection based on

various performance criteria.

7. Performance Comparison: Performance metrics of the

three models—SVM, Random Forest, and XGBoost—are

compared to determine the best-performing algorithm. The

comparison is visualized using bar graphs, which provide a

clear and concise representation of each model's precision,

recall, F1-score, and accuracy. Additionally, a tabular format

presents the detailed performance metrics for easy reference.

This comparative analysis highlights the strengths and

weaknesses of each model, aiding in the selection of the most

suitable model for deployment.

8. Prediction on Test Data: The trained XGBoost model,

identified as the most promising, is used to predict the nature

of URLs from a separate test dataset ("Dataset/testData.csv").

Each URL in the test dataset undergoes feature extraction

using the get_features() function, and the model predicts

whether the URL is legitimate or phishing based on these

features. This step demonstrates the model's practical

application in real-world scenarios, providing a mechanism

to evaluate new URLs for potential phishing threats.

Figure 3.1: Block Diagram of Proposed System

3.2 Data Preprocessing

Data pre-processing is a process of preparing the raw data and

making it suitable for a machine learning model. It is the first

and crucial step while creating a machine learning model. When

creating a machine learning project, it is not always a case that

we come across the clean and formatted data. And while doing

any operation with data, it is mandatory to clean it and put in a

formatted way. So, for this, we use data preprocessing task. A

real-world data generally contains noises, missing values, and

maybe in an unusable format which cannot be directly used for

machine learning models. Data pre-processing is required tasks

for cleaning the data and making it suitable for a machine

learning model which also increases the accuracy and

efficiency of a machine learning model.

• Getting the dataset

• Importing libraries

• Importing datasets

• Finding Missing Data

• Encoding Categorical Data

• Splitting dataset into training and test set

Importing Libraries: To perform data preprocessing using

Python, we need to import some predefined Python libraries.

These libraries are used to perform some specific jobs. There

are three specific libraries that we will use for data

preprocessing, which are:

Numpy: Numpy Python library is used for including any type

of mathematical operation in the code. It is the fundamental

package for scientific calculation in Python. It also supports to

add large, multidimensional arrays and matrices. So, in Python,

we can import it as: import numpy as nm

Here we have used nm, which is a short name for Numpy, and

it will be used in the whole program.

Matplotlib: The second library is matplotlib, which is a Python

2D plotting library, and with this library, we need to import a

sub-library pyplot. This library is used to plot any type of charts

in Python for the code. It will be imported as below:

import matplotlib.pyplot as mpt

Here we have used mpt as a short name for this library.

 ISSN NO: 9726-001X

Volume 13 Issue 02 2025

136

Pandas: The last library is the Pandas library, which is one of

the most famous Python libraries and used for importing and

managing the datasets. It is an open-source data manipulation

and analysis library. Here, we have used pd as a short name

for this library. Consider the below image:

Figure 3.2: Importing Libraries

Handling Missing data: The next step of data preprocessing

is to handle missing data in the datasets. If our dataset

contains some missing data, then it may create a huge

problem for our machine learning model. Hence it is

necessary to handle missing values present in the dataset.

There are mainly two ways to handle missing data, which are:

• By deleting the particular row: The first way is used to

commonly deal with null values. In this way, we just delete

the specific row or column which consists of null values. But

this way is not so efficient and removing data may lead to loss

of information which will not give the accurate output.

• By calculating the mean: In this way, we will calculate the

mean of that column or row which contains any missing value

and will put it in place of the missing value. This strategy is

useful for features that have numeric data such as age, salary,

year, etc.

Encoding Categorical data: Categorical data is data which

has some categories such as, in our dataset; there are two

categorical variables, Country, and Purchased. Since

machine learning model completely works on mathematics

and numbers, but if our dataset would have a categorical

variable, then it may create trouble while building the model.

So, it is necessary to encode these categorical variables into

numbers.

Feature Scaling: Feature scaling is the final step of data

preprocessing in machine learning. It is a technique to

standardize the independent variables of the dataset in a

specific range. In feature scaling, we put our variables in the

same range and in the same scale so that no variable

dominates the other variable. A machine learning model is

based on Euclidean distance, and if we do not scale the

variable, then it will cause some issue in our machine learning

model. Euclidean distance is given as:

Figure 3.3: Feature scaling.

If we compute any two values from age and salary, then salary

values will dominate the age values, and it will produce an

incorrect result. So, to remove this issue, we need to perform

feature scaling for machine learning.

3.3 Splitting the Dataset

In machine learning data preprocessing, we divide our dataset

into a training set and test set. This is one of the crucial steps of

data preprocessing as by doing this, we can enhance the

performance of our machine learning model. Suppose if we

have given training to our machine learning model by a dataset

and we test it by a completely different dataset. Then, it will

create difficulties for our model to understand the correlations

between the models. If we train our model very well and its

training accuracy is also very high, but we provide a new

dataset to it, then it will decrease the performance. So we

always try to make a machine learning model which performs

well with the training set and also with the test dataset. Here,

we can define these datasets as:

Fig 3.4: Splitting the dataset.

Training Set: A subset of dataset to train the machine learning

model, and we already know the output.

Test set: A subset of dataset to test the machine learning model,

and by using the test set, model predicts the output.

For splitting the dataset, we will use the below lines of code:

from sklearn.model_selection import train_test_split x_train,

x_test, y_train, y_test= train_test_split(x, y, test_size= 0.2,

random_state=0)

 ISSN NO: 9726-001X

Volume 13 Issue 02 2025

137

Explanation:

• In the above code, the first line is used for splitting

arrays of the dataset into random train and test subsets.

• In the second line, we have used four variables for our

output that are

• x_train: features for the training data

• x_test: features for testing data

• y_train: Dependent variables for training data

• y_test: Independent variable for testing data

• In train_test_split() function, we have passed four

parameters in which first two are for arrays of data,

and test_size is for specifying the size of the test set.

The test_size maybe .5, .3, or .2, which tells the

dividing ratio of training and testing sets.

• The last parameter random_state is used to set a seed

for a random generator so that you always get the

same result, and the most used value

3.4 PROPOSED SYSTEM XGBOOST Model

XGBoost is a popular machine learning algorithm that

belongs to the supervised learning technique. It can be used

for both Classification and Regression problems in ML. It is

based on the concept of ensemble learning, which is a process

of combining multiple classifiers to solve a complex problem

and to improve the performance of the model. As the name

suggests, "XGBoost is a classifier that contains a number of

decision trees on various subsets of the given dataset and

takes the average to improve the predictive accuracy of that

dataset." Instead of relying on one decision tree, the

XGBoost takes the prediction from each tree and based on the

majority votes of predictions, and it predicts the final output.

The greater number of trees in the forest leads to higher

accuracy and prevents the problem of overfitting.

Fig. 3.5: XGBoost algorithm.

XGBoost, which stands for "Extreme Gradient Boosting," is

a popular and powerful machine learning algorithm used for

both classification and regression tasks. It is known for its

high predictive accuracy and efficiency, and it has won

numerous data science competitions and is widely used in

industry and academia. Here are some key characteristics and

concepts related to the XGBoost algorithm:

• Ensemble Learning: XGBoost is an ensemble learning

method, which means it combines the predictions from multiple

machine learning models to make more accurate predictions

than any single model. It uses an ensemble of decision trees,

known as "boosted trees."

• Boosting: Boosting is a sequential technique in which

multiple weak learners (usually decision trees with limited

depth) are trained one after the other. Each new tree tries to

correct the errors made by the previous ones.

• Gradient Boosting: XGBoost is a gradient boosting

algorithm. It minimizes a loss function by adding weak models

(trees) that minimize the gradient of the loss function at each

stage. This is done by fitting a tree to the residuals (the

differences between the predicted and actual values) of the

previousmodel.

• Regularization: XGBoost includes L1 (Lasso regression) and

L2 (Ridge regression) regularization terms in the objective

function to prevent overfitting. These regularization terms help

control the complexity of individual trees and reduce the risk of

overfitting the training data.

• Tree Pruning: XGBoost uses a technique called "pruning" to

remove branches of the trees that do not contribute significantly

to the model's predictive power. This reduces the complexity of

the trees and helps prevent overfitting.

• Feature Importance: XGBoost provides a feature

importance score, which helps you understand the contribution

of each feature (input variable) in making predictions. You can

use this information for feature selection and interpretation.

• Parallel and Distributed Computing: XGBoost is designed

for efficiency and can take advantage of parallel and distributed

computing to train on large datasets faster.

• Handling Missing Data: XGBoost can handle missing data

by finding an optimal direction for missing values during tree

construction.

• Early Stopping: To avoid overfitting, XGBoost supports

early stopping, which allows you to stop training when the

model's performance on a validation dataset starts to degrade

.

• Hyperparameter Tuning: XGBoost has several

hyperparameters that can be tuned to optimize the model's

performance, including the learning rate, tree depth, number of

trees (boosting rounds), and regularization parameters.

 ISSN NO: 9726-001X

Volume 13 Issue 02 2025

138

IV. RESULTS AND DISCUSSION

4.1 Implementation Description

Here's a detailed implementation description of each block in

the project code:

Project Initialization and Dataset Handling

The project initializes by installing necessary packages and

importing essential Python libraries such as pandas, numpy,

matplotlib, seaborn, urllib, sklearn, and xgboost. These

libraries are crucial for data manipulation, visualization,

machine learning model building, and evaluation. The code

sets up the environment by loading the required modules and

configuring the necessary components for data analysis and

model training.

Exploratory Data Analysis (EDA)

• After importing the libraries, the next step involves

loading the dataset ("Dataset/phish_tank_storm.csv")

using pd.read_csv() from pandas. This dataset contains

URLs and their associated labels, where 0 denotes

legitimate URLs and 1 denotes phishing URLs. The

fillna() method is used to handle missing values in the

dataset, ensuring that any undefined entries are replaced

with zeros.

• To understand the distribution of data, an exploratory

data analysis is conducted. The number of legitimate and

phishing URLs is computed using groupby() and size(),

and these counts are visualized using a bar plot generated

with matplotlib.pyplot. This visualization provides an

initial insight into the class distribution within the

dataset, highlighting potential class imbalances that may

affect model training and evaluation.

Feature Engineering

• Feature engineering is a crucial step in preparing the

dataset for machine learning model training. The

get_features() function is defined to extract relevant

features from the URLs:

• Each URL is split into components such as protocol,

domain, path, query, and fragment using
urllib.parse.urlsplit().

• Features like the length of each component (url_length,

domain_length, etc.) and counts of specific characters (.

for dots, - for hyphens, / for slashes, etc.) are computed.

• These features aim to capture distinctive patterns between

legitimate and phishing URLs, which are essential for

training effective machine learning models.

Data Preprocessing

After feature extraction, the dataset is preprocessed to handle

non-numeric data. Features extracted from URLs are added

to the dataset, and non-numeric columns (url, protocol,

domain, path, query, fragment) are dropped. The dataset is then

saved into a new file "processed.csv" for future use, ensuring

that the processed features are preserved for model training and

evaluation.

Machine Learning Model Training

• Three machine learning models are trained on the

preprocessed dataset:

• Support Vector Machine (SVM): Utilizes the SVC class

from sklearn.svm for training. The SVM classifier is

trained to classify URLs into legitimate and phishing

categories based on the extracted features.

• Random Forest: Trains a random forest classifier

using RandomForest Classifier from sklearn.ensemble.

This ensemble learning method builds multiple decision

trees and combines their predictions to improve accuracy

in distinguishing between legitimate and phishing URLs.

• XGBoost (Extreme Gradient Boosting): Implements

gradient boosting using XGBClassifier from xgboost.

XGBoost is chosen for its efficiency in handling large

datasets and its ability to optimize classification

performance.

• Each model is trained on the dataset features (X_train) and

their corresponding labels (y_train) to learn the patterns

that differentiate legitimate URLs from phishing URLs.

Model Evaluation

Following model training, the performance of each model is

evaluated on a separate test set (X_test, y_test). Metrics such as

accuracy, precision, recall, and F1-score are computed using

functions from sklearn.metrics. Confusion matrices are

generated using confusion_matrix from sklearn.metrics and

visualized using seaborn and matplotlib.pyplot, providing a

detailed breakdown of true positive, true negative, false

positive, and false negative predictions.

Performance Comparison

The performance metrics (accuracy, precision, recall, F1-score)

of SVM, Random Forest, and XGBoost models are compared

and visualized using bar graphs generated with

matplotlib.pyplot. Tabular data presents a detailed comparison

of performance metrics across all models, highlighting the

strengths and weaknesses of each algorithm in distinguishing

between legitimate and phishing URLs.

Prediction on Test Data

The trained XGBoost model is applied to predict the nature

(legitimate or phishing) of URLs from a separate test dataset

("Dataset/testData.csv"). For each URL in the test dataset,

features are extracted and normalized using the previously

 ISSN NO: 9726-001X

Volume 13 Issue 02 2025

139

trained scaler. The XGBoost model predicts the label (0 for

legitimate, 1 for phishing), demonstrating its capability to

classify unseen URLs based on learned patterns.

4.2 Dataset Description

The given dataset contains information about URLs and their

characteristics, for the purpose of classifying them as either

legitimate or phishing URLs. Here’s a detailed description of

each column in the dataset:

• url: This column contains the URLs that are being

analyzed. Each entry in this column is a string

representing a web address.

• ranking: This column contains a ranking value

associated with each URL, which is based on factors

such as traffic, popularity, or search engine ranking.

• mld_res: This column contains a feature related to the

main domain of the URL after some processing or

resolution. "mld" stand for "main level domain."

• mld.ps_res: Similar to mld_res, this column contains

another processed or resolved feature related to the

main domain, a secondary or more specific aspect.

• card_rem: This column contain values representing a

certain characteristic or feature of the URL after some

form of "removal" or processing. "card" stand for

"cardinality" or some metric related to unique elements

in the URL.

• ratio_Rrem: This column contains a ratio value related

to the "Rrem" characteristic of the URL. It represents

the ratio of a certain type of element removed or

retained in the URL.

• ratio_Arem: This column contains a ratio value related

to the "Arem" characteristic, similar to ratio_Rrem, but

focusing on a different aspect or type of element.

• jaccard_RR: This column contains the Jaccard

similarity coefficient between the "R" elements of the

URLs, which measures the similarity between two sets.

• jaccard_RA: This column contains the Jaccard

similarity coefficient between the "R" and "A" elements

of the URLs.

• jaccard_AR: This column contains the Jaccard

similarity coefficient between the "A" and "R" elements

of the URLs.

• jaccard_AA: This column contains the Jaccard

similarity coefficient between the "A" elements of the

URLs.

• jaccard_ARrd: This column contains the Jaccard

similarity coefficient between the "AR" elements after

some form of reduction or processing (denoted by "rd").

• jaccard_ARrem: This column contains the Jaccard

similarity coefficient between the "AR" elements after

removal or some form of processing (denoted by

"rem").

• label: This column contains the labels for the URLs,

with 0 indicating legitimate URLs and 1 indicating

phishing URLs. This is the target variable for the

classification task.

4.3 Results Description

• Figure 1: Sample Dataset PishCatcher – Displays the

raw data used for analysis, including various features

relevant to detecting phishing activities.

• Figure 2: Count Plot of Phishing Column – Visual

representation of the distribution of phishing versus

non-phishing instances in the dataset.

• Figure 3: Pre processed Data frame – Shows the

cleaned and transformed dataset prepared for model

training and evaluation.

• Figure 4: Confusion Matrix for SVM Classifier –

Details the true positive, true negative, false positive,

and false negative values, indicating the classifier's

performance on the test data.

• Figure 5: Confusion Matrix for RFC Classifier –

Highlights the RFC model's accuracy by displaying the

distribution of correct and incorrect predictions.

• Figure 6: Confusion Matrix for XGBoost Classifier –

Summarizes the predictive accuracy of XGBoost by

indicating the number of true and false classifications

made.

• Figure 7: Performance Comparison Graph –

Compares the performance metrics of SVM, RFC, and

XGBoost classifiers, providing a clear visual of their

effectiveness in identifying phishing instances.

• Figure 8: ROC Curve Comparison of Classifiers –

Displays the ROC curves for SVM, RFC, and XGBoost

models, showing the True Positive Rate (TPR) versus

the False Positive Rate (FPR). The AUC values

indicate the overall discrimination capability of each

model, with higher AUC values.

 ISSN NO: 9726-001X

Volume 13 Issue 02 2025

140

Fig.4.1: Presents the Sample Dataset PishCatcher

Fig.4.2: Shows the Count plot of Phishing column in dataset.

Fig.4.3: Presents the Preprocessed dataframe from the

dataset.

Fig.4.4: Confusion Matrix of SVM Classifier.

Fig.4.5: Confusion Matrix of RFC Classifier

 ISSN NO: 9726-001X

Volume 13 Issue 02 2025

141

Algorithm

Name

 Recall FScore Accuracy

Existing 96. 96.83 96.86% 96.86%

SVM 97 %

 %

Propose 98. 98.64 98.65% 98.65%

Random 67 %

Forest %

Extension 99. 99.22 99.23% 99.23%

XGBoost 24 %

 %

Fig.4.6: Confusion Matrix of XGBoost Classifier.

Fig.4.7: Performance Comparison Graph of SVM, RFR,

XGBoost Classifiers.

Table 1: Performance Metrics of SVM, RFR, XGBoost

Algorithms

Description of the Table

This table tells the performance metrics of three different

machine learning algorithms: Existing SVM, Proposed

Random Forest, and Extension XGBoost. The metrics

evaluated include Precision, Recall, FScore, and Accuracy, all

of which are expressed as percentages.

• Algorithm Name: This column lists the names of the

three algorithms whose performances are being

compared.

• Precision: Precision, also known as Positive Predictive

Value, is the ratio of true positive predictions to the total

number of positive predictions (true positives plus false

positives). Higher precision indicates a lower false

positive rate.

• Recall: Recall, also known as Sensitivity or True

Positive Rate, is the ratio of true positive predictions to

the total number of actual positives (true positives plus

false negatives). Higher recall indicates a lower false

negative rate.

• FScore: The FScore, or F1 Score, is the harmonic mean

of precision and recall, providing a single metric that

balances both concerns. Higher FScore values indicate

better overall performance.

• Accuracy: Accuracy is the ratio of correctly predicted

instances (true positives and true negatives) to the total

number of instances. It provides an overall effectiveness

measure of the model.

Detailed Insights:

• Existing SVM: This algorithm achieved a precision

of 96.97%, a recall of 96.83%, an FScore of 96.86%,

and an overall accuracy of 96.86%. This indicates that

while it performs well, there is room for improvement,

particularly when compared to the other algorithms.

• Proposed Random Forest: This algorithm shows an

 ISSN NO: 9726-001X

Volume 13 Issue 02 2025

142

improvement over the Existing SVM, with a

precision of 98.67%, recall of 98.64%, FScore of

98.65%, and accuracy of 98.65%. This suggests it

is more effective in minimizing both false positives

and false negatives, leading to better overall

performance.

• Extension XGBoost: This algorithm demonstrates

the highest performance across all metrics, with a

precision of 99.24%, recall of 99.22%, FScore of

99.23%, and accuracy of 99.23%. This indicates

superior ability to correctly classify instances with

minimal errors, making it the best performing

model among the three.

Fig 4.8: Proposed Model prediction on test data.

Figure 8 illustrates the performance of the proposed XGBoost

model in predicting the classification of URLs on a given test

dataset. The figure provides a visual representation of how

effectively the model distinguishes between legitimate and

phishing URLs based on the features extracted from the

dataset.

V. CONCLUSION

The project focused on developing a robust machine learning

model to effectively distinguish between legitimate and

phishing URLs. Various models, including Support Vector

Machine (SVM), Random Forest, and XGBoost, were

employed to analyze and classify URLs based on a set of

extracted features. The XGBoost model demonstrated

superior performance, achieving high accuracy, precision,

recall, and F1 scores, indicating its efficacy in detecting

phishing URLs. The project successfully highlighted the

potential of machine learning techniques in enhancing

cybersecurity measures, specifically in the automated

detection of phishing attempts.

5.1 Future Scope

Despite the success of the project, there are several areas for

future research and development to further enhance the

phishing detection system:

Feature Expansion:

• Incorporate New Features: Integrate additional

features such as WHOIS data, IP address analysis, and

content-based features to improve detection accuracy.

• Behavioral Analysis: Consider user behavior

patterns and historical data to refine predictions.

Model Improvement:

• Hyperparameter Tuning: Optimize the

hyperparameters of the XGBoost model and other

algorithms to achieve even better performance.

• Ensemble Learning: Implement and test ensemble

methods combining multiple models to leverage their

strengths and mitigate individual weaknesses.

Real-time Detection:

• Scalability: Adapt the model for real-time detection

of phishing URLs in dynamic environments, ensuring

it can handle large volumes of data efficiently.

• Deployment: Develop a user-friendly application or

browser extension that utilizes the trained model to

provide real-time phishing detection for end-users.

Adversarial Robustness:

• Adversarial Training: Enhance the model's

robustness against adversarial attacks where attackers

might craft URLs specifically to evade detection.

• Continuous Learning: Implement a system for

continuous learning and model updating based on new

data to keep up with evolving phishing tactics.

Cross-platform Integration:

• API Development: Create APIs that allow

integration of the phishing detection system with

various platforms such as email clients, web browsers,

and cybersecurity software.

• Collaborative Filtering: Utilize collaborative

filtering techniques to share threat intelligence across

different systems and organizations, improving

overall security.

Explainability and Transparency:

• Model Explainability: Develop methods to make the

model's predictions more interpretable for users, helping

 ISSN NO: 9726-001X

Volume 13 Issue 02 2025

143

them understand why a URL is flagged as phishing.

• User Education: Incorporate educational components

that inform users about phishing risks and safe browsing

practices based on model outputs.

REFERENCES

[1] W. Khan, A. Ahmad, A. Qamar, M. Kamran, and M.

Altaf, "SpoofCatch: A client-side protection tool against

phishing attacks," IT Prof., vol. 23, no. 2, pp. 65-74, Mar.

2021.

[2] B. Schneier, "Two-factor authentication: Too little too

late," Commun. ACM, vol. 48, no. 4, pp. 136, Apr. 2005.

[3] S. Garera, N. Provos, M. Chew, and A. D. Rubin, "A

framework for detection and measurement of phishing

attacks," Proc. ACM Workshop Recurring malcode, pp. 1-8,

Nov 2007.

[4] R. Oppliger and S. Gajek, "Effective protection against

phishing and web spoofing," Proc. IFIP Int. Conf. Commun.

Multimedia Secur., pp. 32-41, 2005.

[5] T. Pietraszek and C. V. Berghe, "Defending against

injection attacks through context-sensitive string evaluation,"

Proc. Int. Workshop Recent Adv. Intrusion Detection, pp.

124-145, 2005.

[6] M. Johns, B. Braun, M. Schrank, and J. Posegga,

"Reliable protection against session fixation attacks," Proc.

ACM Symp. Appl. Comput., pp. 1531-1537, 2011.

[7] M. Bugliesi, S. Calzavara, R. Focardi, and W. Khan,

"Automatic and robust client-side protection for cookie-

based sessions," Proc. Int. Symp. Eng. Secure Softw. Syst.,

pp. 161-178, 2014.

[8] Herzberg and A. Gbara, "Protecting (even naive) web

users from spoofing and phishing attacks," 2004.

[9] N. Chou, R. Ledesma, Y. Teraguchi, and J.

Mitchell, "Client-side defense against web-based

identity theft," Proc. NDSS, 2004.B. Hämmerli and R.

Sommer, "Detection of Intrusions and Malware and

Vulnerability Assessment: 4th International

Conference DIMVA 2007 Lucerne Switzerland July12-

132007 Proceedings," vol. 4579, 2007.

[10] C. Yue and H. Wang, "BogusBiter: A

transparent protection against phishing attacks," ACM

Trans. Internet Technol., vol. 10, no. 2, pp. 1-31, May

2010.

[11] W. Chu, B. B. Zhu, F. Xue, X. Guan, and Z. Cai,

"Protect sensitive sites from phishing attacks using

features extractable from inaccessible phishing URLs," Proc.

IEEE Int. Conf. Commun. (ICC), pp. 1990-1994, Jun. 2013.

[12] Y. Zhang, J. I. Hong, and L. F. Cranor, "Cantina: A

content-based approach to detecting phishing web sites," Proc.

16th Int. Conf. World Wide Web, pp. 639-648, May 2007.

[13] D. Miyamoto, H. Hazeyama, and Y. Kadobayashi, "An

evaluation of machine learning-based methods for detection of

phishing sites," Proc. Int. Conf. Neural Inf. Process., pp. 539-

546, 2008.

[14] E. Medvet, E. Kirda, and C. Kruegel, "Visual-similarity-

based phishing detection," Proc. 4th Int. Conf. Secur. privacy

Commun. Netowrks, pp. 1-6, Sep. 2008.

[15] W. Zhang, H. Lu, B. Xu, and H. Yang, "Web phishing

detection based on page spatial layout similarity," Informatica,

vol. 37, no. 3, pp. 1-14, 2013.

[16] J. Ni, Y. Cai, G. Tang, and Y. Xie, "Collaborative filtering

recommendation algorithm based on TF-IDF and user

characteristics," Appl. Sci., vol. 11, no. 20, pp. 9554, Oct. 2021.

[17] W. Liu, X. Deng, G. Huang, and A. Y. Fu, "An

antiphishing strategy based on visual similarity assessment,"

IEEE Internet Comput., vol. 10, no. 2, pp. 58-65, Mar. 2006.

[18] A. Rusu and V. Govindaraju, "Visual CAPTCHA with

handwritten image analysis," Proc. Int. Workshop Human

Interact. Proofs, pp. 42-52, 2005.

