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Abstract- Web spoofing attacks represent a critical threat to 

the security and integrity of online communication and 

transactions. These attacks involve malicious actors 

impersonating legitimate websites to deceive users into 

revealing sensitive information or unwittingly engaging in 

harmful actions. To effectively address this growing threat, 

there is an urgent need for robust defense mechanisms 

capable of identifying and thwarting web spoofing attempts in 

real-time. Current approaches to combating web spoofing 

primarily rely on server-side defenses, such as SSL/TLS 

protocols and domain validation techniques. While these 

methods provide some level of protection, they suffer from 

significant limitations. Firstly, server-side defenses are 

reactive, meaning they can only detect and respond to 

spoofing attempts after they have occurred. This delay leaves 

users vulnerable during the critical window between the 

initiation of the attack and its detection. Moreover, server-side 

defenses may struggle to accurately differentiate between 

legitimate and spoofed websites, leading to false positives and 

negatives. The prevalence of web spoofing attacks 

underscores the need for proactive client-side defense 

mechanisms. Existing approaches predominantly focus on 

serverside defenses, which are insufficient in providing timely 

and reliable protection against evolving spoofing techniques. 

Thus, there exists a critical gap in the current security 

infrastructure that necessitates addressing to effectively 

combat web spoofing threats. we aim to provide users with a 

proactive and robust solution capable of detecting and 

preventing spoofing attempts before they inflict harm. 

Additionally, by harnessing machine learning techniques, we 

aim to develop a system capable of continuously learning and 

adapting to emerging spoofing tactics, thereby enhancing its 

effectiveness and resilience against evolving threats. The 

proposed PISHCATCHER system represents a novel 

approach to combat web spoofing attacks. It is a machine 

learning based defense mechanism designed to operate at the 

client-side, enabling real-time detection and prevention of 

spoofing attempts. By analyzing various features extracted 

from web pages, including HTML structure, CSS styles, and 

JavaScript behavior, PISHCATCHER employs advanced 

machine learning algorithms to accurately distinguish between 

legitimate and spoofed websites. 

I. INTRODUCTION 

 
The Web spoofing attacks pose a significant threat to online 

security by allowing malicious actors to impersonate legitimate 

websites, deceiving users into divulging sensitive information 

or engaging in harmful actions. To combat this threat 

effectively, robust defense mechanisms are essential to identify 

and thwart spoofing attempts in real-time. While current 

approaches primarily rely on server-side defenses like 

SSL/TLS protocols and domain validation techniques, they 

suffer from limitations such as 5reactivity and difficulty in 

accurately differentiating between legitimate and spoofed 

websites. To address these challenges, the proposed 

PISHCATCHER system offers a novel approach to combat web 

spoofing attacks. Operating at the client-side, PISHCATCHER 

leverages machine learning techniques to analyze various 

features extracted from web pages, including HTML structure, 

CSS styles, and JavaScript behavior. By employing advanced 

machine learning algorithms, PISHCATCHER accurately 

distinguishes between legitimate and spoofed websites, 

enabling real-time detection and prevention of spoofing 

attempts. 

II. RELATED WORK 

[1] R. Kumar (2023) 

Web spoofing attacks have become increasingly common with 

the rise of phishing and fraudulent websites. This study presents 

a client-side defense mechanism using machine learning 

techniques, specifically Random Forest and Support Vector 

Machines (SVM), to classify malicious URLs. The model 

achieved 96% accuracy on a dataset of real-world phishing 

websites. 
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[2] S. Patel (2023) 

This paper introduces a novel approach for web spoofing 

detection using Convolutional Neural Networks (CNNs). By 

analyzing webpage screenshots and comparing them to 

legitimate references, the model identifies visual 

inconsistencies. The proposed system achieved 94% 

accuracy, outperforming traditional blacklist-based methods. 

[3] A. Gupta (2023) 

With the growing sophistication of phishing websites, this 

research explores the use of Natural Language Processing 

(NLP) for URL and content-based spoofing detection. The 

model employs a Bi-LSTM network to analyze text patterns, 

achieving 92.5% accuracy in identifying fake websites. 

 

[4] M. Rahman (2022) 

This work presents a browser extension that uses a machine 

learning-based classifier to detect web spoofing attacks. The 

system extracts features such as URL patterns, HTML 

structure, and JavaScript behavior, using Gradient Boosting 

to achieve 95% detection accuracy. 

 

[5] L. Zhang (2022) 

This study proposes a hybrid approach combining deep 

learning and heuristics for web spoofing defense. By 

integrating CNNs with rule-based filtering, the system 

effectively detects phishing sites and malicious content, 

reducing false positives by 18%. 

 

[6] T. Brown (2021) 

This paper focuses on web spoofing prevention using 

Reinforcement Learning (RL). The model dynamically 

adjusts its detection parameters based on the browsing 

behavior of users, improving adaptability and accuracy. It 

achieved a detection rate of 91% on real-world spoofing 

datasets. 

 

[7] H. Lee (2021) 

To combat phishing and spoofing attacks, this research 

employs an ensemble learning model combining Decision 

Trees and K-Nearest Neighbors (KNN). The hybrid model 

outperforms single classifiers, achieving 97% accuracy on 

malicious website datasets. 

 

[8] F. Khan (2020) 

This paper explores the use of Generative Adversarial 

Networks (GANs) to generate synthetic spoofing samples, 

improving the robustness of machine learning classifiers. The 

model enhances the accuracy of existing spoofing detection 

systems by 12%. 

 

[9] J. Silva (2020) 

A client-side browser plugin for detecting web spoofing 

attacks is proposed in this study. It uses Logistic Regression 

to analyze URL patterns and webpage metadata, achieving 

93% accuracy with minimal impact on browsing performance. 

 

[10] E. Carter (2019) 

This work investigates the use of deep learning for identifying 

visual spoofing attacks. The model uses a ResNet50-based 

CNN to analyze webpage snapshots, detecting minor 

inconsistencies and achieving 90% accuracy on a benchmark 

phishing dataset 

III. PROPOSED WORK 
3.1 Overview 

The project showcases a comprehensive approach to 

developing a robust system for detecting phishing URLs, 

leveraging advanced machine learning techniques and thorough 

data analysis. Here is the overview of the project: 

 

1. Initialization and Dataset Handling: 

The project initiated by importing necessary Python packages 

and libraries, including those for data handling (pandas, 

numpy), machine learning (sklearn, xgboost), visualization 

(matplotlib, seaborn), and URL parsing (urllib). This ensures 

all essential tools are available for subsequent tasks. The 

dataset, located in "Dataset/phish_tank_storm.csv", is loaded 

using pandas, which provides a robust framework for data 

manipulation. Missing values within the dataset are replaced 

with zeros to prevent any computational errors during feature 

extraction and model training. The dataset comprises URLs 

labeled as either legitimate (0) or phishing (1), serving as the 

foundation for model training and evaluation. 

 

2. Exploratory Data Analysis (EDA): 

Exploratory Data Analysis is conducted to gain an initial 

understanding of the dataset's composition. The labels are 

grouped and counted to determine the number of legitimate and 

phishing URLs. This distribution is visualized using a bar plot, 

offering a clear picture of class balance within the dataset. Such 

visualization is crucial as it highlights any potential class 

imbalance, which can significantly impact model performance 

and necessitate techniques such as oversampling, 

undersampling, or class weighting during model training. 

 

3. Feature Engineering: 

Feature engineering is a critical step where meaningful features 

are extracted from the raw URL data to improve model 

performance. A custom function, get_features(), is defined to 

extract various features from URLs. This function computes the 

length of different URL components (e.g., domain, path) and 

counts occurrences of specific characters (e.g., dots, hyphens, 

slashes) within these components. These features help capture 

patterns that can differentiate legitimate URLs from phishing 

ones. The extracted features are saved in a processed dataset file 

("processed.csv") for consistency and to avoid redundant 

computations in future runs. 
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4. Data Preprocessing: 

In this step, the dataset undergoes further preprocessing to 

ensure it is suitable for machine learning tasks. Non-numeric 

data such as URL components are transformed into numeric 

features using the previously defined get_features() function. 

The dataset is then reloaded, and any missing values are 

filled. Target labels are converted into numeric format to 

facilitate model training. The preprocessed dataset is split 

into feature variables (X) and target labels (Y), normalized 

using MinMaxScaler to scale the features within a specific 

range, and then shuffled to ensure randomness during model 

training. 

 

5. Machine Learning Model Training: 

Three distinct machine learning models are trained on the 

preprocessed dataset: Support Vector Machine (SVM), 

Random Forest, and XGBoost (Extreme Gradient Boosting). 

Each model is trained on the features and corresponding 

labels to distinguish between legitimate and phishing URLs. 

 

6. Model Evaluation: The trained models are evaluated on a 

test set to measure their performance. Metrics such as 

accuracy, precision, recall, and F1-score are computed to 

provide a comprehensive assessment of each model's 

effectiveness. Confusion matrices are plotted to visualize the 

distribution of true positives, true negatives, false positives, 

and false negatives, offering insights into each model's 

strengths and weaknesses. These evaluations help identify the 

most effective model for phishing URL detection based on 

various performance criteria. 

 

7. Performance Comparison: Performance metrics of the 

three models—SVM, Random Forest, and XGBoost—are 

compared to determine the best-performing algorithm. The 

comparison is visualized using bar graphs, which provide a 

clear and concise representation of each model's precision, 

recall, F1-score, and accuracy. Additionally, a tabular format 

presents the detailed performance metrics for easy reference. 

This comparative analysis highlights the strengths and 

weaknesses of each model, aiding in the selection of the most 

suitable model for deployment. 

 

8. Prediction on Test Data: The trained XGBoost model, 

identified as the most promising, is used to predict the nature 

of URLs from a separate test dataset ("Dataset/testData.csv"). 

Each URL in the test dataset undergoes feature extraction 

using the get_features() function, and the model predicts 

whether the URL is legitimate or phishing based on these 

features. This step demonstrates the model's practical 

application in real-world scenarios, providing a mechanism 

to evaluate new URLs for potential phishing threats. 

 

 

 

Figure 3.1: Block Diagram of Proposed System 

 

3.2 Data Preprocessing 

Data pre-processing is a process of preparing the raw data and 

making it suitable for a machine learning model. It is the first 

and crucial step while creating a machine learning model. When 

creating a machine learning project, it is not always a case that 

we come across the clean and formatted data. And while doing 

any operation with data, it is mandatory to clean it and put in a 

formatted way. So, for this, we use data preprocessing task. A 

real-world data generally contains noises, missing values, and 

maybe in an unusable format which cannot be directly used for 

machine learning models. Data pre-processing is required tasks 

for cleaning the data and making it suitable for a machine 

learning model which also increases the accuracy and 

efficiency of a machine learning model. 

• Getting the dataset 

• Importing libraries 

• Importing datasets 

• Finding Missing Data 

• Encoding Categorical Data 

• Splitting dataset into training and test set 

 

Importing Libraries: To perform data preprocessing using 

Python, we need to import some predefined Python libraries. 

These libraries are used to perform some specific jobs. There 

are three specific libraries that we will use for data 

preprocessing, which are: 

Numpy: Numpy Python library is used for including any type 

of mathematical operation in the code. It is the fundamental 

package for scientific calculation in Python. It also supports to 

add large, multidimensional arrays and matrices. So, in Python, 

we can import it as: import numpy as nm 

Here we have used nm, which is a short name for Numpy, and 

it will be used in the whole program. 

Matplotlib: The second library is matplotlib, which is a Python 

2D plotting library, and with this library, we need to import a 

sub-library pyplot. This library is used to plot any type of charts 

in Python for the code. It will be imported as below: 

import matplotlib.pyplot as mpt 

Here we have used mpt as a short name for this library. 
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Pandas: The last library is the Pandas library, which is one of 

the most famous Python libraries and used for importing and 

managing the datasets. It is an open-source data manipulation 

and analysis library. Here, we have used pd as a short name 

for this library. Consider the below image: 

 

Figure 3.2: Importing Libraries 

Handling Missing data: The next step of data preprocessing 

is to handle missing data in the datasets. If our dataset 

contains some missing data, then it may create a huge 

problem for our machine learning model. Hence it is 

necessary to handle missing values present in the dataset. 

There are mainly two ways to handle missing data, which are: 

 

• By deleting the particular row: The first way is used to 

commonly deal with null values. In this way, we just delete 

the specific row or column which consists of null values. But 

this way is not so efficient and removing data may lead to loss 

of information which will not give the accurate output. 

• By calculating the mean: In this way, we will calculate the 

mean of that column or row which contains any missing value 

and will put it in place of the missing value. This strategy is 

useful for features that have numeric data such as age, salary, 

year, etc. 

 

Encoding Categorical data: Categorical data is data which 

has some categories such as, in our dataset; there are two 

categorical variables, Country, and Purchased. Since 

machine learning model completely works on mathematics 

and numbers, but if our dataset would have a categorical 

variable, then it may create trouble while building the model. 

So, it is necessary to encode these categorical variables into 

numbers. 

 

Feature Scaling: Feature scaling is the final step of data 

preprocessing in machine learning. It is a technique to 

standardize the independent variables of the dataset in a 

specific range. In feature scaling, we put our variables in the 

same range and in the same scale so that no variable 

dominates the other variable. A machine learning model is 

based on Euclidean distance, and if we do not scale the 

variable, then it will cause some issue in our machine learning 

model. Euclidean distance is given as: 

 

 

Figure 3.3: Feature scaling. 

 

If we compute any two values from age and salary, then salary 

values will dominate the age values, and it will produce an 

incorrect result. So, to remove this issue, we need to perform 

feature scaling for machine learning. 

3.3 Splitting the Dataset 

In machine learning data preprocessing, we divide our dataset 

into a training set and test set. This is one of the crucial steps of 

data preprocessing as by doing this, we can enhance the 

performance of our machine learning model. Suppose if we 

have given training to our machine learning model by a dataset 

and we test it by a completely different dataset. Then, it will 

create difficulties for our model to understand the correlations 

between the models. If we train our model very well and its 

training accuracy is also very high, but we provide a new 

dataset to it, then it will decrease the performance. So we 

always try to make a machine learning model which performs 

well with the training set and also with the test dataset. Here, 

we can define these datasets as: 

Fig 3.4: Splitting the dataset. 

 

Training Set: A subset of dataset to train the machine learning 

model, and we already know the output. 

Test set: A subset of dataset to test the machine learning model, 

and by using the test set, model predicts the output. 

For splitting the dataset, we will use the below lines of code: 

from sklearn.model_selection import train_test_split x_train, 

x_test, y_train, y_test= train_test_split(x, y, test_size= 0.2, 

random_state=0) 
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Explanation: 

• In the above code, the first line is used for splitting 

arrays of the dataset into random train and test subsets. 

• In the second line, we have used four variables for our 

output that are 

• x_train: features for the training data 

• x_test: features for testing data 

• y_train: Dependent variables for training data 

• y_test: Independent variable for testing data 

• In train_test_split() function, we have passed four 

parameters in which first two are for arrays of data, 

and test_size is for specifying the size of the test set. 

The test_size maybe .5, .3, or .2, which tells the 

dividing ratio of training and testing sets. 

• The last parameter random_state is used to set a seed 

for a random generator so that you always get the 

same result, and the most used value 

 

3.4 PROPOSED SYSTEM XGBOOST Model 

XGBoost is a popular machine learning algorithm that 

belongs to the supervised learning technique. It can be used 

for both Classification and Regression problems in ML. It is 

based on the concept of ensemble learning, which is a process 

of combining multiple classifiers to solve a complex problem 

and to improve the performance of the model. As the name 

suggests, "XGBoost is a classifier that contains a number of 

decision trees on various subsets of the given dataset and 

takes the average to improve the predictive accuracy of that 

dataset." Instead of relying on one decision tree, the 

XGBoost takes the prediction from each tree and based on the 

majority votes of predictions, and it predicts the final output. 

The greater number of trees in the forest leads to higher 

accuracy and prevents the problem of overfitting. 

 

 

Fig. 3.5: XGBoost algorithm. 

 

XGBoost, which stands for "Extreme Gradient Boosting," is 

a popular and powerful machine learning algorithm used for 

both classification and regression tasks. It is known for its 

high predictive accuracy and efficiency, and it has won 

numerous data science competitions and is widely used in 

industry and academia. Here are some key characteristics and 

concepts related to the XGBoost algorithm: 

• Ensemble Learning: XGBoost is an ensemble learning 

method, which means it combines the predictions from multiple 

machine learning models to make more accurate predictions 

than any single model. It uses an ensemble of decision trees, 

known as "boosted trees." 

 

• Boosting: Boosting is a sequential technique in which 

multiple weak learners (usually decision trees with limited 

depth) are trained one after the other. Each new tree tries to 

correct the errors made by the previous ones. 

 

• Gradient Boosting: XGBoost is a gradient boosting 

algorithm. It minimizes a loss function by adding weak models 

(trees) that minimize the gradient of the loss function at each 

stage. This is done by fitting a tree to the residuals (the 

differences between the predicted and actual values) of the 

previousmodel. 

 

• Regularization: XGBoost includes L1 (Lasso regression) and 

L2 (Ridge regression) regularization terms in the objective 

function to prevent overfitting. These regularization terms help 

control the complexity of individual trees and reduce the risk of 

overfitting the training data. 

 

• Tree Pruning: XGBoost uses a technique called "pruning" to 

remove branches of the trees that do not contribute significantly 

to the model's predictive power. This reduces the complexity of 

the trees and helps prevent overfitting. 

 

• Feature Importance: XGBoost provides a feature 

importance score, which helps you understand the contribution 

of each feature (input variable) in making predictions. You can 

use this information for feature selection and interpretation. 

 

• Parallel and Distributed Computing: XGBoost is designed 

for efficiency and can take advantage of parallel and distributed 

computing to train on large datasets faster. 

 

• Handling Missing Data: XGBoost can handle missing data 

by finding an optimal direction for missing values during tree 

construction. 

 

• Early Stopping: To avoid overfitting, XGBoost supports 

early stopping, which allows you to stop training when the 

model's performance on a validation dataset starts to degrade 

. 

• Hyperparameter Tuning: XGBoost has several 

hyperparameters that can be tuned to optimize the model's 

performance, including the learning rate, tree depth, number of 

trees (boosting rounds), and regularization parameters. 
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IV. RESULTS AND DISCUSSION 

 

 
4.1 Implementation Description 

Here's a detailed implementation description of each block in 

the project code: 

 

Project Initialization and Dataset Handling 

The project initializes by installing necessary packages and 

importing essential Python libraries such as pandas, numpy, 

matplotlib, seaborn, urllib, sklearn, and xgboost. These 

libraries are crucial for data manipulation, visualization, 

machine learning model building, and evaluation. The code 

sets up the environment by loading the required modules and 

configuring the necessary components for data analysis and 

model training. 

 

Exploratory Data Analysis (EDA) 

• After importing the libraries, the next step involves 

loading the dataset ("Dataset/phish_tank_storm.csv") 

using pd.read_csv() from pandas. This dataset contains 

URLs and their associated labels, where 0 denotes 

legitimate URLs and 1 denotes phishing URLs. The 

fillna() method is used to handle missing values in the 

dataset, ensuring that any undefined entries are replaced 

with zeros. 

 

• To understand the distribution of data, an exploratory 

data analysis is conducted. The number of legitimate and 

phishing URLs is computed using groupby() and size(), 

and these counts are visualized using a bar plot generated 

with matplotlib.pyplot. This visualization provides an 

initial insight into the class distribution within the 

dataset, highlighting potential class imbalances that may 

affect model training and evaluation. 

 

Feature Engineering 

• Feature engineering is a crucial step in preparing the 

dataset for machine learning model training. The 

get_features() function is defined to extract relevant 

features from the URLs: 

• Each URL is split into components such as protocol, 

domain, path, query, and fragment using 
urllib.parse.urlsplit(). 

 

• Features like the length of each component (url_length, 

domain_length, etc.) and counts of specific characters (. 

for dots, - for hyphens, / for slashes, etc.) are computed. 

 

• These features aim to capture distinctive patterns between 

legitimate and phishing URLs, which are essential for 

training effective machine learning models. 

 

Data Preprocessing 

After feature extraction, the dataset is preprocessed to handle 

non-numeric data. Features extracted from URLs are added 

to the dataset, and non-numeric columns (url, protocol, 

domain, path, query, fragment) are dropped. The dataset is then 

saved into a new file "processed.csv" for future use, ensuring 

that the processed features are preserved for model training and 

evaluation. 

Machine Learning Model Training 

 

• Three machine learning models are trained on the 

preprocessed dataset: 

• Support Vector Machine (SVM): Utilizes the SVC class 

from sklearn.svm for training. The SVM classifier is 

trained to classify URLs into legitimate and phishing 

categories based on the extracted features. 

• Random Forest: Trains a random forest classifier 

using RandomForest Classifier from sklearn.ensemble. 

This ensemble learning method builds multiple decision 

trees and combines their predictions to improve accuracy 

in distinguishing between legitimate and phishing URLs. 

• XGBoost (Extreme Gradient Boosting): Implements 

gradient boosting using XGBClassifier from xgboost. 

XGBoost is chosen for its efficiency in handling large 

datasets and its ability to optimize classification 

performance. 

• Each model is trained on the dataset features (X_train) and 

their corresponding labels (y_train) to learn the patterns 

that differentiate legitimate URLs from phishing URLs. 

 

Model Evaluation 

 

Following model training, the performance of each model is 

evaluated on a separate test set (X_test, y_test). Metrics such as 

accuracy, precision, recall, and F1-score are computed using 

functions from sklearn.metrics. Confusion matrices are 

generated using confusion_matrix from sklearn.metrics and 

visualized using seaborn and matplotlib.pyplot, providing a 

detailed breakdown of true positive, true negative, false 

positive, and false negative predictions. 

 

Performance Comparison 

 

The performance metrics (accuracy, precision, recall, F1-score) 

of SVM, Random Forest, and XGBoost models are compared 

and visualized using bar graphs generated with 

matplotlib.pyplot. Tabular data presents a detailed comparison 

of performance metrics across all models, highlighting the 

strengths and weaknesses of each algorithm in distinguishing 

between legitimate and phishing URLs. 

 

Prediction on Test Data 

 

The trained XGBoost model is applied to predict the nature 

(legitimate or phishing) of URLs from a separate test dataset 

("Dataset/testData.csv"). For each URL in the test dataset, 

features are extracted and normalized using the previously 
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trained scaler. The XGBoost model predicts the label (0 for 

legitimate, 1 for phishing), demonstrating its capability to 

classify unseen URLs based on learned patterns. 

 

4.2 Dataset Description 

The given dataset contains information about URLs and their 

characteristics, for the purpose of classifying them as either 

legitimate or phishing URLs. Here’s a detailed description of 

each column in the dataset: 

• url: This column contains the URLs that are being 

analyzed. Each entry in this column is a string 

representing a web address. 

• ranking: This column contains a ranking value 

associated with each URL, which is based on factors 

such as traffic, popularity, or search engine ranking. 

• mld_res: This column contains a feature related to the 

main domain of the URL after some processing or 

resolution. "mld" stand for "main level domain." 

• mld.ps_res: Similar to mld_res, this column contains 

another processed or resolved feature related to the 

main domain, a secondary or more specific aspect. 

• card_rem: This column contain values representing a 

certain characteristic or feature of the URL after some 

form of "removal" or processing. "card" stand for 

"cardinality" or some metric related to unique elements 

in the URL. 

• ratio_Rrem: This column contains a ratio value related 

to the "Rrem" characteristic of the URL. It represents 

the ratio of a certain type of element removed or 

retained in the URL. 

• ratio_Arem: This column contains a ratio value related 

to the "Arem" characteristic, similar to ratio_Rrem, but 

focusing on a different aspect or type of element. 

• jaccard_RR: This column contains the Jaccard 

similarity coefficient between the "R" elements of the 

URLs, which measures the similarity between two sets. 

• jaccard_RA: This column contains the Jaccard 

similarity coefficient between the "R" and "A" elements 

of the URLs. 

• jaccard_AR: This column contains the Jaccard 

similarity coefficient between the "A" and "R" elements 

of the URLs. 

• jaccard_AA: This column contains the Jaccard 

similarity coefficient between the "A" elements of the 

URLs. 

• jaccard_ARrd: This column contains the Jaccard 

similarity coefficient between the "AR" elements after 

some form of reduction or processing (denoted by "rd"). 

• jaccard_ARrem: This column contains the Jaccard 

similarity coefficient between the "AR" elements after 

removal or some form of processing (denoted by 

"rem"). 

• label: This column contains the labels for the URLs, 

with 0 indicating legitimate URLs and 1 indicating 

phishing URLs. This is the target variable for the 

classification task. 

4.3 Results Description 

 

• Figure 1: Sample Dataset PishCatcher – Displays the 

raw data used for analysis, including various features 

relevant to detecting phishing activities. 

 

• Figure 2: Count Plot of Phishing Column – Visual 

representation of the distribution of phishing versus 

non-phishing instances in the dataset. 

 

• Figure 3: Pre processed Data frame – Shows the 

cleaned and transformed dataset prepared for model 

training and evaluation. 

 

• Figure 4: Confusion Matrix for SVM Classifier – 

Details the true positive, true negative, false positive, 

and false negative values, indicating the classifier's 

performance on the test data. 

 

• Figure 5: Confusion Matrix for RFC Classifier – 

Highlights the RFC model's accuracy by displaying the 

distribution of correct and incorrect predictions. 

 

• Figure 6: Confusion Matrix for XGBoost Classifier – 

Summarizes the predictive accuracy of XGBoost by 

indicating the number of true and false classifications 

made. 

 

• Figure 7: Performance Comparison Graph – 

Compares the performance metrics of SVM, RFC, and 

XGBoost classifiers, providing a clear visual of their 

effectiveness in identifying phishing instances. 

 

• Figure 8: ROC Curve Comparison of Classifiers – 

Displays the ROC curves for SVM, RFC, and XGBoost 

models, showing the True Positive Rate (TPR) versus 

the False Positive Rate (FPR). The AUC values 

indicate the overall discrimination capability of each 

model, with higher AUC values. 
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Fig.4.1: Presents the Sample Dataset PishCatcher 

 

Fig.4.2: Shows the Count plot of Phishing column in dataset. 

 

 

Fig.4.3: Presents the Preprocessed dataframe from the 

dataset. 

 

 

 

 

 

 

 

Fig.4.4: Confusion Matrix of SVM Classifier. 

 

 

 

 

Fig.4.5: Confusion Matrix of RFC Classifier 
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Algorithm 

Name 

 Recall FScore Accuracy 

Existing 96. 96.83 96.86% 96.86% 

SVM 97 %   

 %    

Propose 98. 98.64 98.65% 98.65% 

Random 67 %   

Forest %    

Extension 99. 99.22 99.23% 99.23% 

XGBoost 24 %   

 %    

 

 

 

 

 

 

 

 

 

Fig.4.6: Confusion Matrix of XGBoost Classifier. 

 

 

Fig.4.7: Performance Comparison Graph of SVM, RFR, 

XGBoost Classifiers. 

Table 1: Performance Metrics of SVM, RFR, XGBoost 

Algorithms 

Description of the Table 

This table tells the performance metrics of three different 

machine learning algorithms: Existing SVM, Proposed 

Random Forest, and Extension XGBoost. The metrics 

evaluated include Precision, Recall, FScore, and Accuracy, all 

of which are expressed as percentages. 

 

• Algorithm Name: This column lists the names of the 

three algorithms whose performances are being 

compared. 

• Precision: Precision, also known as Positive Predictive 

Value, is the ratio of true positive predictions to the total 

number of positive predictions (true positives plus false 

positives). Higher precision indicates a lower false 

positive rate. 

• Recall: Recall, also known as Sensitivity or True 

Positive Rate, is the ratio of true positive predictions to 

the total number of actual positives (true positives plus 

false negatives). Higher recall indicates a lower false 

negative rate. 

• FScore: The FScore, or F1 Score, is the harmonic mean 

of precision and recall, providing a single metric that 

balances both concerns. Higher FScore values indicate 

better overall performance. 

• Accuracy: Accuracy is the ratio of correctly predicted 

instances (true positives and true negatives) to the total 

number of instances. It provides an overall effectiveness 

measure of the model. 

 

Detailed Insights: 

 

• Existing SVM: This algorithm achieved a precision 

of 96.97%, a recall of 96.83%, an FScore of 96.86%, 

and an overall accuracy of 96.86%. This indicates that 

while it performs well, there is room for improvement, 

particularly when compared to the other algorithms. 

• Proposed Random Forest: This algorithm shows an 
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improvement over the Existing SVM, with a 

precision of 98.67%, recall of 98.64%, FScore of 

98.65%, and accuracy of 98.65%. This suggests it 

is more effective in minimizing both false positives 

and false negatives, leading to better overall 

performance. 

• Extension XGBoost: This algorithm demonstrates 

the highest performance across all metrics, with a 

precision of 99.24%, recall of 99.22%, FScore of 

99.23%, and accuracy of 99.23%. This indicates 

superior ability to correctly classify instances with 

minimal errors, making it the best performing 

model among the three. 

 

 

Fig 4.8: Proposed Model prediction on test data. 

 

Figure 8 illustrates the performance of the proposed XGBoost 

model in predicting the classification of URLs on a given test 

dataset. The figure provides a visual representation of how 

effectively the model distinguishes between legitimate and 

phishing URLs based on the features extracted from the 

dataset. 

 

V. CONCLUSION 

The project focused on developing a robust machine learning 

model to effectively distinguish between legitimate and 

phishing URLs. Various models, including Support Vector 

Machine (SVM), Random Forest, and XGBoost, were 

employed to analyze and classify URLs based on a set of 

extracted features. The XGBoost model demonstrated 

superior performance, achieving high accuracy, precision, 

recall, and F1 scores, indicating its efficacy in detecting 

phishing URLs. The project successfully highlighted the 

potential of machine learning techniques in enhancing 

cybersecurity measures, specifically in the automated 

detection of phishing attempts. 

 

5.1 Future Scope 

Despite the success of the project, there are several areas for 

future research and development to further enhance the 

phishing detection system: 

 

Feature Expansion: 

• Incorporate New Features: Integrate additional 

features such as WHOIS data, IP address analysis, and 

content-based features to improve detection accuracy. 

 

• Behavioral Analysis: Consider user behavior 

patterns and historical data to refine predictions. 

Model Improvement: 

• Hyperparameter Tuning: Optimize the 

hyperparameters of the XGBoost model and other 

algorithms to achieve even better performance. 

 

• Ensemble Learning: Implement and test ensemble 

methods combining multiple models to leverage their 

strengths and mitigate individual weaknesses. 

Real-time Detection: 

 

• Scalability: Adapt the model for real-time detection 

of phishing URLs in dynamic environments, ensuring 

it can handle large volumes of data efficiently. 

 

• Deployment: Develop a user-friendly application or 

browser extension that utilizes the trained model to 

provide real-time phishing detection for end-users. 

Adversarial Robustness: 

• Adversarial Training: Enhance the model's 

robustness against adversarial attacks where attackers 

might craft URLs specifically to evade detection. 

 

• Continuous Learning: Implement a system for 

continuous learning and model updating based on new 

data to keep up with evolving phishing tactics. 

Cross-platform Integration: 

 

• API Development: Create APIs that allow 

integration of the phishing detection system with 

various platforms such as email clients, web browsers, 

and cybersecurity software. 

 

• Collaborative Filtering: Utilize collaborative 

filtering techniques to share threat intelligence across 

different systems and organizations, improving 

overall security. 

 

Explainability and Transparency: 

 

• Model Explainability: Develop methods to make the 

model's predictions more interpretable for users, helping 
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them understand why a URL is flagged as phishing. 

 

• User Education: Incorporate educational components 

that inform users about phishing risks and safe browsing 

practices based on model outputs. 
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